Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
2.
Inflamm Res ; 72(2): 301-312, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-2254945

RESUMEN

BACKGROUND: SARS-CoV-2-induced severe inflammatory response can be associated with severe medical consequences leading to multi-organ failure, including the liver. The main mechanism behind this assault is the aggressive cytokine storm that induces cytotoxicity in various organs. Of interest, hepatic stellate cells (HSC) respond acutely to liver injury through several molecular mechanisms, hence furthering the perpetuation of the cytokine storm and its resultant tissue damage. In addition, hepatocytes undergo apoptosis or necrosis resulting in the release of pro-inflammatory and pro-fibrogenic mediators that lead to chronic liver inflammation. AIMS: The aim of this review is to summarize available data on SARS-CoV-2-induced liver inflammation in addition to evaluate the potential effect of anti-inflammatory drugs in attenuating SARS-CoV-2-induced liver inflammation. METHODS: Thorough PubMed search was done to gather and summarize published data on SARS-CoV-2-induced liver inflammation. Additionally, various anti-inflammatory potential treatments were also documented. RESULTS: Published data documented SARS-CoV-2 infection of liver tissues and is prominent in most liver cells. Also, histological analysis showed various features of tissues damage, e.g., hepatocellular necrosis, mitosis, cellular infiltration, and fatty degeneration in addition to microvesicular steatosis and inflammation. Finally, the efficacy of the different drugs used to treat SARS-CoV-2-induced liver injury, in particular the anti-inflammatory remedies, are likely to have some beneficial effect to treat liver injury in COVID-19. CONCLUSION: SARS-CoV-2-induced liver inflammation is a serious condition, and drugs with potent anti-inflammatory effect can play a major role in preventing irreversible liver damage in COVID-19.


Asunto(s)
COVID-19 , Hepatopatías , Humanos , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Inflamación , Antiinflamatorios/uso terapéutico , Necrosis
3.
Inflamm Res ; 71(1): 39-56, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1525531

RESUMEN

The COVID-19 pandemic created a worldwide debilitating health crisis with the entire humanity suffering from the deleterious effects associated with the high infectivity and mortality rates. While significant evidence is currently available online and targets various aspects of the disease, both inflammatory and noninflammatory kidney manifestations secondary to COVID-19 infection are still largely underrepresented. In this review, we summarized current knowledge about COVID-19-related kidney manifestations, their pathologic mechanisms as well as various pharmacotherapies used to treat patients with COVID-19. We also shed light on the effect of these medications on kidney functions that can further enhance renal damage secondary to the illness.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/fisiopatología , Enfermedades Renales/fisiopatología , Riñón/lesiones , Lesión Renal Aguda/complicaciones , Aldosterona/metabolismo , Angiotensinas/química , Anticuerpos Monoclonales Humanizados/administración & dosificación , Autopsia , Biopsia , COVID-19/complicaciones , Vacunas contra la COVID-19 , Dexametasona/administración & dosificación , Enoxaparina/administración & dosificación , Heparina/administración & dosificación , Heparina de Bajo-Peso-Molecular/administración & dosificación , Humanos , Inflamación , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Enfermedades Renales/complicaciones , Trasplante de Riñón , Lopinavir/administración & dosificación , Pandemias , Terapia de Reemplazo Renal , Sistema Renina-Angiotensina , Ritonavir/administración & dosificación , SARS-CoV-2
4.
Front Med (Lausanne) ; 8: 620990, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1170093

RESUMEN

Coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most concerning health problem worldwide. SARS-CoV-2 infects cells by binding to angiotensin-converting enzyme 2 (ACE2). It is believed that the differential response to SARS-CoV-2 is correlated with the differential expression of ACE2. Several reports proposed the use of ACE2 pharmacological inhibitors and ACE2 antibodies to block viral entry. However, ACE2 inhibition is associated with lung and cardiovascular pathology and would probably increase the pathogenesis of COVID-19. Therefore, utilizing ACE2 soluble analogs to block viral entry while rescuing ACE2 activity has been proposed. Despite their protective effects, such analogs can form a circulating reservoir of the virus, thus accelerating its spread in the body. Levels of ACE2 are reduced following viral infection, possibly due to increased viral entry and lysis of ACE2 positive cells. Downregulation of ACE2/Ang (1-7) axis is associated with Ang II upregulation. Of note, while Ang (1-7) exerts protective effects on the lung and cardiovasculature, Ang II elicits pro-inflammatory and pro-fibrotic detrimental effects by binding to the angiotensin type 1 receptor (AT1R). Indeed, AT1R blockers (ARBs) can alleviate the harmful effects associated with Ang II upregulation while increasing ACE2 expression and thus the risk of viral infection. Therefore, Ang (1-7) agonists seem to be a better treatment option. Another approach is the transfusion of convalescent plasma from recovered patients with deteriorated symptoms. Indeed, this appears to be promising due to the neutralizing capacity of anti-COVID-19 antibodies. In light of these considerations, we encourage the adoption of Ang (1-7) agonists and convalescent plasma conjugated therapy for the treatment of COVID-19 patients. This therapeutic regimen is expected to be a safer choice since it possesses the proven ability to neutralize the virus while ensuring lung and cardiovascular protection through modulation of the inflammatory response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA